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1. ABSTR~ACT

Results of a study of three specific items of interest
to the development of procedures for estimating initial radiation

protection factors for buildtngs are presented. These include:

1. The effects of new cross section data for
nicroger and uxygen on initial radiation
envirnsnts are presented;

2. Caiculz'ions of delayed radiation ex'4xon-
ments 4r large yield w apons are presented.
The calculations are based on the NUMMA
code; &nd

3. Senitivity analyses of the effects of
compositon, thic/mess, and design charac-
teristics of wall constructicns are
presented.i

-
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2. SUMMARY

This report presents the results of a study conducted

for the Defense Civil Preparedness Agency (DCPA) by Science

Applications, Inc. (SAI) to provide supplementary data fir the

development of a methodology to determine initial radiation pro-

tection factors (IPF) for civil defense applications. These data

involve characterization of free-field radiation environments

based on the best available cross section data, datermination of

the importence of delayed radiations for large yield nuclear
weapons, and presentation of procedures which would allow the

IPF assessment methodology to include the effects of construction
material composition variations and design characteristics.

Suggestions are presented for inclusion of the results of this

study into procedures fcr es imating IPF for civilian structures.

iVx

I
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3. I1 ?RODUCTION AND BACKGROUND

VT3e Defense Civil Preparedness Agency (DCPA) has for

the past few years been in the process of developing procedures

to determine the protection which buildings will pr-vride from

initial nuclear radiation (INs) other initial :ects asco-

ciated with nuclear weapons explosions. These procedures, which

are similar to procedures developed for fallout radiation, are

presently being defined. This report addresses three specific
items which are necessary to finalize procedures for estimating

initial radiation protection factors (1PF):

1. The determiniation of the effect of new cross
section data on free field radiation environ-
ments and their impact on earlier INR shielding
analysis,

2. The evaluation of delayed neutron and gamma ray
environments from larga yleld weapons, and

3. The analysis of the sensitivity of calculated
dose to the composition, thickness, and design
characteristics of walls in structures.

These three items are addressed respectively in 'Thapters 4, 5,
and 6.

TheI rree field radiation environments presently being

used for IFF calculations are based on the work of E. A. Straker

and M. L. Gritzner ( 4 ) . These air transport results were obtained

in 1969 using cross section data from ENDF/B-I. In the last few

years, substantial effort has been spent by the Defense Nuclear

Agency (DNA) to obtain better evaluations of the nitrogen and

o.ygen cross sections. The impact of the newe: cross section

evaluations are reflected in the analysis des-ribed in Chapter 4.

7 M
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The development of the NUIDEA Code sponsored by DNA

and carried out by SAI provides a new capability for estimating

the delayed radiation dose from large yield nuclear weapons.

Results obtained from this ccde are presented in Chapter 5.

For initial nuclear radiation, the transport of neu-

trons and the production of secondary gamma rays is not only a

function of the mass thickness of shielding material, but also

a function of the material composition. Previous calcalations

of barrier factors for neutrons are based on a fixed concrete

composition and do not consider variations in protect.ion factors

which may arise from variations in concrete composition and

construction methods. Chapter 6 describes a series of transport

calculatious performed for various thicknesses and several con-

crete compositions of interest. In addition, pertirbation cal-

culations are presented which show the effect of specific chemical

constituents of concrete un the shielding properties. Transport

results are also shown for several wall and roof constructions.

6



4. FREE FIELD FIVIRONMNT -PROMPT

Previous recommendati.ons specifying the initial radia-

tions from nuclear weapons wera made in 1972 by the ad hoc Sub-

committee on Radiation Shielding which is part of the National
(1)Academy of Sciences Advisory Committee on Civil Defense

These data have been used for civil defense shielding analyses

and, in particular, for the determination of radiation protec-

tion factors provided by structures. During the late 1960's

and early 1970's, considerable effort was expended by the

Defense Atomic Support Agency (DASA) and later the DNA to develop

methods for calculating radiation transport in air and to improve

the basic cross section data required fur these calculations.

The results of these efforts can now be used to revise the free

field radiation environments recommended in Reference i.

There are basically two revisions considered in this

report. The first reported in this chapter is a revision to the
prompt neutron and secondary gamma ray environment due to i pdated

nuclear cross oections derived from DNA sponsored research.2).

The calcularions reported in this chapter were performed with
the one-d1mensional discrete ordinates code, ANISN 3)  The

cross sections for nitrogen and oxygen used for the air trans-
port calculations were obtained from the DNA few group library
referenced in Reference 2. Additional problem data and results

of the calculations are described below.

4. 1 TRANSPORT PROBLEM DATA

4.1.1 Source Spectra

The air transport calculations were performed using
the nominal "typical" thermonuclear source spectra which has

L-ype(4)
been the convention to use in problems of this type . This

.4 R vme m7
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source distributions, grouped in the DNA few groups library

group structure, is given in Table 1. Only the neutron source

has been considered. The omission of th prompt galma ray

source is justifiable because the prompt 6 m'x ray component

of the prompt dose is significant only very near the source.

At distances of interest for civil defense applications, the prompt

total dose is dominated by neutrons and secondary gamma rays.

4.1.2 Cross Sections

The DNA few group library is a coupled neutron and
gamma ray multigroup cross sections library. There are 37
neutron groups and 2. gamma ray groups. The scattering angular
distributions are approximated by a P3 Legendre expansion.

The air density was taken to be 0.00111 gm/cm 3 . At
this density the atomic density of nitrogen and oxygen are

3.635x10 and 9.620xl0 6 atems per barn-cm, respectively. All
other constituents of air were conside.ed to be negligible.

4.1.3 Response Functions

In addition to calculations of the neutron and second-

ary gamma ray fluxes, tabulations have been made of integral
response data appropriate for estimating prompt radiation doses
to hum &n. For this purpose the Snyder Neufeld neutron response
function and the Henderson tissue gamma ray response function

have been used. This choice of response function is consistent

with that which has been used previously. These response func-

tions are given in Tables 2 and 3.

4.L4 Calculational Method

The neutron and secondary gammsa ray flux from a

point source in air was calculated using the one-dimansional
discrete ordinates code, ANISN. An S4 0 angular quadrature was
used. The transport waa carried ta 333 gm/cM Z in air so that



Table 1. Typical Thermnuclear Source Distribution.

Group Upper Energy Group Fractiou
Number Boundary (MeV) (Neutrons/Source Neutron)

1 19.6 0.
2 16.9 0.
3 14.9 1.89(-2)
4 14.2 9.34(-3)
5 13.8 2.66(-2)
6 12.8 1.67(-2)
7 12.2 1.69(-2)
8 11.1 1.24(-2)
9 10.0 7.48(-2)

10 9. 6.82(-3)
11 8.2 6.78(-3)
12 7.4 1.03(-2)
13 6.4 1.81(-2)
14 5.0 3.62(-3)
15 4.7 1.24(-2)
16 4.1 2.60(-2)
17 3.0 2.37 (-2)
18 2.4 3.75(-3)
19 2.3 2.56(-2)
20 1.8 6.44(-2)
21 1.1 8.85(-2)
22 5.5(-1) 9.14.-2)
23 1.S(-1) 1.16(-2)24- 1.1(-l) 1.11(-1)
25 5.2(-Z) 5.40(-2)
26 2.5(-2) 5.68(-3)
27 2.2(-2) 9.26(-2)

28 1.0(-2) 1.16(-1)
,9 3.4(-3) 7.38(-2)
30 I.Z(-3) 7.32(-2)
31 5.8(-4) 2.03 (-2d-
32 1.0(-4) 1.90(-3)
33 2.9(-5) 0.
34 1.1(-5) 0.
35 3.1(-6) 0.
36 1(-6) 0.
37 4. f-7) 0.

1.0(-11)

5
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Table 2. Snyder Neufeld Neutron Response Function.

GrouV Upper Energy Response Function
Ntmbar Boundary (MeV) (rads/n/cm2 )

1 19.6 7.00558(-9)
2 16.9 7.00558(-9)
3 14.9 7.00558(-9)
4 14.2 7.00558(-9)
5 13.8 7.00558(-9)
6 12.8 7.00558(-9)
7 12.2 7.00558(-9)
8 11.1 7.00558(-9)
9 10.0 7.05279(-9)

10 9. 7.10289(-9)
.1 8.2 7.03619(-9)
12 7.4 6.71089(-9)
13 6.4 6.07429(-9)
14 5.0 5.69619(-9)
15 4.7 5.37649(-9)
16 4.1 4.86219(-9)
17 3.0 4.47859(-9)
18 2.4 4.34239(-9)
19 2.3 4.22839(-9)
20 1.8 3.97819(-9)
21 1.1 3.34990(-9)
22 5.5(-1) 1.84200(-9)
23 1.6(-1) 1.23350(-9)
24 1.1(-) 9.51589(-10)
25 5.2(-2) 6.92769(-10)
26 2.5(-2) 5.90470(-10)
27 2.2(-Z) 5.52389(-10)
28 1.0(-2) 5.57940(-10)
29 3.4(-3) 6.00199(-10)
30 1.2(-3) 6.16599(-10)
31 5.8(-4) 6.72759(-10)
32 1.0(-4) 5.34589(-10)
33 2.9(-5) 3.88369(-10)
34 1.1(-5) 3.43049(-10)
35 3.1(-6) 3.27479(-10)
36 1.1(-6) 3.23040(-10)
37 4.1(-7) 3.20529(-10)

1.0(-)

10• t



Table 3. Henderson Tissue Gamma Ray Response Function.

Group Upper Energy Response Function
Number Boundary (MeV) (rads/ _or... photon/cm2 )

1 14. 3.20810(-9)
2 11J. 2.4722(-9)
3 8. 2.08470(-9)
4 7. 1.86510(-9)
5 6. 1.66130(-9)
6 5. 1.44310(-9)
7 4. 1.19710(-9)
8 3. 1.01110(-9)
9 2.5 8.70689(-10)

10 2.0 5.64059(-10)
11 1.5 5.64059(-10)
12 1.0 4.10599(-10)
13 0.7 2.93009(-10)
14 0.45 1.922F0(-.0)
15 0.30 1.l0590(-10)
16 0.15 5.48209(-l1)
17 0.10 3.7U30(-.1)
18 0.07 3.67239(-11)
19 0.045 6.32728(-11)
20 0.03 1.41590(-10)

21 0.02 4.40629(-10)
0.01

A-
I L.1



the spectra will be free of boundary leakage effects to at

least 250 gm/c 2 or a distance of 2.25 ki.

4.2 FREE F LD NEUTRON AND SECONDARY GAMMA RAY SPECTRA

Figure la-j shows the n, :ron fluence per unit lechargy

per source neutron for several ranges from 0.2 km to 2 km. The

spectra can be observed to harden rap.dly with increasing penetra-

tion in air to a'c-_'t I km. Beyond I km the shape of the spectrum

is changing slowly although the total intensity continues to
decrease with increasing penetration.

Figure lf which shows the fluence per unit lethargy
at 1200 m also gives a plot of the energy spectra recommended

in Reference i. To facilitate a comparison with the prompt

environments reported In Reference 1, the present results are
also presented in th.z same format. Figures 2a-p show the free

field neutron fluence multiplied by the geometry factor 4nR2

versus range. Only a few of the DRA few gro.p library groups

correspond directly with the group structure utilized in
Reference 1.

The previous liscussion has focused on spectral dif-

ferences which result by using more recent cross section evalua-

tions. It is aLo useful to examine the differences in the
angular distributions as a function of distance using these

newer data. A convenient method of illustrating these differ-
ences is to make direct comparison of the expansion coefficients
of the angular distributions at various distances from a point

source. Using chis procedure provides an adequate summary of

the important conclusions, yet presents the data in a readily
usable form. In Table 4, we present the ratio of the harmonic

coefficients, P0 through P3 , of the angular dose distributions

as a function of distance frog the source. The dose response

functions and souvce distributions used were described previously.
Examination of these results indicate that the change in these

distributions become more pronounced. at larger distances, but

are still quite small, i.e., less than 30%.

1Z
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Table 4. Ratios of Expansion Coefficients of Dose Angular
Distribution at Various Ranges (New Data/Old Data).

Range (m) PO PI P2  P3

800 0.95 0.90 0.85 0.82

1200 0.91 0.87 0.83 0.80

1600 0.87 0.84 0.81 0.80

2000 0.83 0.82 0.80 0.79
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Figre 3a-j shows the secondary gamma ray fluence

per unit lethargy per source neutron for several ranges from

0.2 to 2 k-n. The spectra can be seen to be relatively insensi-

tive to range. Figure 2f compares the secondary gamma ray

fluence per unit lethargy of 1200 m with that reported in

Reference 1. The spectra are also plotted as a function of

range in Figure 4 in the format of Reference 1 to facilitate

a comparison with previous work.

Figures 5a-c shows the Snyder Neufeld Tissue dose, the

first moment of the dose, and the second moment of the dose as a

'unction of range. Figures 6a-c shows the Henderson Tissue gamma

ray dose, first and second moments of the dose, versus range.

These p:lots are normalized to one source neutron.
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5. FREE FIELD ENVIRONMENT -DELAYED

BACKGROUND

The delayed radiation environment consists of neutrons

and ganma rays emitted by the fission products from a nuclear

weapon burst. The distinction between delayed radiation and

fallout radiation is that delayed radiation is that radiation

received while the fission products are contained in the fireball.

Delayed radiation is defined to be part of the initial radiation

environment which includes all radiation received during the

first minute after the weapon burst. Even for yields on the order
of 10 MT, 957. of the delayed radiation dose is received within
30 seconds from the weapon detonation.

In the past, the prediction of delayed radiation en-

vironments has been a less than satisfactory situation. The
problem is a complex one, complicated by the fact that the

radiation source is contained in a rising and expanding fireball
and the transport, of radiation is occurring in an atmospher:e whose
density distribution is changing due to the expanding shoc. front.
For multiple bursts the problem is further complicated by inter-
acting shock fronts and the possibility of interacting fireballs

and is not well understood. Although, in principle, the problem

could be solved using radiaticn hydrodynamics codes, the physical

size of the problem precludes this as a practical means to a
solution. Historically, empirical models based on test data ba'.e
been developed and applied to the prediction of the delayed en-

vironments. Unfortunately, sufficient data are not available

to construct an empirical model for the range of yields, burst

heights, and weapon types of interest. More recently the problem
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has been approached by phenomenology modeling as exemplified

by the computer code, NUIDEA ( 6 ) .

THE NUIDEA CODE

The development of the NUIDEA Code was sponsored by

the Defense Nuclear Agency (DNA). The documentation and code

should be available to users in the defense coimunity in the

near futu tre.

The NUIDEA Code was developed as a systems-like code

for the investigation of nuclear weapon environments from single

or multiple bursts. The code includes phenomenology models of

nuclear radiation, blast, and thermal radiation. The code in-

corporates portions of the Air Transport of Radiation (ATR)(7)

Code and the Low Altitude Multiple Burst (LAMB)(8)Code.

5.1 CALCULATIONS

A matrix of calculations were performed using the NUIDEA

Code for weapon yields from I KT to 10 M! and for three burst heights

in meters, I meter, 60 WI/3 m, and 225 WI /3 m (where W is the yield

in kilotons). The scaled burst heights were selected as those burst

heights which preclude fallout and optimize blast effects (>10 psi),

respectively. Several components of the delayed radiation environ-
ment were tabulated including tissue dose for delayed gamma rays,

delayed neutrons, and secondary gamm rays from delayed neutrons.

The prompt radiation dose, blast overpressure, and thermal exposure

are also provided by the NUIDEA Code and have been tabulated as
well. For each weapon yield considered, the fission yield was as-

sumed to be 80t of the total yield. The ground elevations for these

cases was 380 meters.

5.2 RE SUL.TS

L.2.1 Radiation Enviramnents

Figures 7, 8, and 9 show the radiation environments at
1500 m ground. rang&- versus yield for the three burst heights, I
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respectively. The figures show all the components of the ini-

tial radiation dose including both prompt and delayed components.

It is observed for the ground burst case that for yields greater

than a few hundred kilotons the delayed gamua dose dominates the
total dose. However, for the 60 W1/ 3 case the delayed gaima dose

exceeds the total prompt dose only for yields greater than 2 lpff.

For the 225 W1/3 case, the prompt dose is always the predominate
component of the total dose.

Figures 10, 11, and 12 show a similar set of curves

for a ground range of 2500 meters. The same observations apply

as in the 1500 meter ground range cases.

5.2.2 Blast Overpressure

Figure 13 zhows the maximum overpressure from a I MT
burst versus ground range Eor the three burst heights. The

ground range for a given overpressure can be determined for
other yields based on the standard cube root scaling laws

(W) 1/3

where GM1 is the ground range at yield W1

GO is the ground range at yield W0

5.2.3 Thermal Exposure

Figures 14, 15, and 16 show the total thermal exposure
versus ground range and weapon yield for the three respective

burst heights.
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6. TRANSPORT RIOTIGH STRUCTURES

This chapter presents results of calculations of the

transport of neutrons and. gamma rays through structural materials.

The transport of neutrons include the production of secondary

gamma rays and their transport. Results for three types of cal-

culations are presented

i. One-dimensional slab transport calculations,

2. Sensitivity calculations for transport through
concrete, and

3. Ring source effects.

The strucuures considered in the culations include

0 Concrete slabs,

& Wood frame walls,

& Brick veneer walls,

& Shigle roofs, and

& Built up, asphalt roofs.

Forward and adjoint one-dImensional transport calculations were

performed using the AITiSN ( 3) discrece ordinates code. The for-

ward calculations used a source distribution determined diroctly

from the free field calculations reported in Chapter 4. All cal-

culations used cross sections from the DNA few group library.

6.1 TRANSPORT THROUGH CONCRETE

6.1.1 Coyicrete Compositions

Concrete does not uz'quely" specify an elemental. corn-
position in the scnse required for radiation transport analysis.
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Variations in moisture content, regional variations in the

conjtituents of concrete, and the basic type of concrete all

will effect the shielding properties. Our approach, therefore,

was to select several basic types of concrete for analysis and

to account for variations within a particular type by perturba-

tion methods.

The elemental composition for several important types

of concrete are listed in Table 5.

6.1.2 Source and Response Functions

The source used for the forward one-dimensional slab

transport calculations was a "shell source" taken directly from

the air transport calculations reported in Chapter 4. The

ANISN Code provides the capability of coupling calculations in

this manner. The assumptions made in coupling the calculations

in this manner is (1) the flux incident on the slab is not per-

turbed by the presence of the slab and (2) the radius of the

coupling surface is sufficiently large and lateral transport

sufficiently limited that the switch from spherical to slab

geometry is appropriate.

The response function which was also used as the

source distribution for the adjoint calculations was the

Snyder Neufel4 neutron response and the Henderson Tissue garna

ray response function (refer back to Chapter 4, Section 4.1.3

and Tables 2 and 3).

6.1.3 Forward Transport Results

The total dose transmission as a funccion of areal

mass is, plotted in Figure 17 for the seven types of concrete

listed in Table 4. Figure 18 showa the ratio of the neutron

dose to the gamma ray dose as a function of areal mass. Both
the transmission and the n/y ratio can be seen to vary sub-

stantially with concrete type ev-ea at the same areal mass.
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6.1.4 Perturbation Calculations

In order to investigate the sensitivity of the trans-

mitted dose through concrete to the concrete composition, a

series of perturbation calculations were performed using the

SAIDOT Code ( 5 ) . The sensitivity calculation is based on the

perturbation relationship

where R is the transmitted dose for a reference problem,

0 is the flux for the reference problem,
Ot  is the adjoint flux for the reference problem,

AL is the "perturbation" to the transport operator, and

AR is the "perturbation" to the transmitted dose.

In the present calculations the perturbation to the transport

operator, AL, has been considered to be a change in the concrete
composition. By using the perturbation relationship and having

calculated the forward and adjoint fluxes for a reference problem,

the transmitted dose for any concrete composition can be estimated

as long as the difference in the concrete composition is not too

different from the composition of the reference problem. If we

define the sensitivity function for a particular element to be

Si _ (OT,ci.0)

where at iis the microscopic cross section for element i,

# elements

then R- - R+AR - RCl+> (NO-Ki
i-l

where is the atomic density of element i in the reference

concrete and

N' is the atomic d.tsity of element i in the "perturbed"
case.
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Table 6 gives the sensitivity function Si as a func-

tion of concrete thickness using type TSF concrete as a reference

case.

The range of applicability for the perturbation can be

tested by using the perturbation results to predict the trans-

mission factors for the concrete compositions listed in Table 5

and comparing with the transport results. Table 7 shows the
fractional error of the perturbation theory prediction when corn-

* pared with the transport (ANISN) results. Using TSF concrete as
a base case, perturbation theory can be seen to accurately pre-
dict the transmitted dose for ordinary concrete Type 03 and Type

04, as well as for Serpentine concrete. However, perturbation

theory does not give an accurate prediction for the Magnetite

concrete, and Limonite with steel punchings. Perturbation theory
fails for these cases because the iron loading for these con-

cretes is so high. However, it appears that perturbations from

TSF concrete can be quite accurately predicted for concrete con-

taining less than about 5 weight percent iron. In order to

treat the more heavily iron loaded concretes with perturbation

theory would require a reference fluxes for a more heavily

* loaded concrete. The results based on TSF concrete should be

accurate for most concretes coconly encountered in the con-
struction industry.

6.2 TRANSPORT THROUGH OTHER STRUCTURAL ELEMENTS

The transmission factors for other structural elements

cononly found in the building industry have also been calculated.

These structural elements include roof and wall constructions
coonly found in residential homes. These include both wood

and brick exterior walls, the shingle roof, and the built up
aphalt and gravel roof. Figure 19 shows the materials and con-

figuration of these structural elements. In order for these
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Table 6. Sensitivity Functions for Various Elements
in Concrete (Based on Type TSF Concrete).

Senstivitv Function ra _

Elemnt 12.14 g/c=2  46.94 gz/cm2  93.88 gm/cm
, ._ _ _ _m -

H -8.70 -17,9 -37.8
C -3.92 -11.4 -21.6
0 -4.09 -12.4 -24.3

Na -5.Z4 -14.9 -36.5
Mg -4.33 -15.9 -34.3
A1 -3.68 -14.7 -33.9

Si -3.88 -15.9 -36.4
S -16.7 -67.8 -153.
K -2.16 -10.8 -53.8

Ca -4.43 -20.7 -52.6
Ti 0.497 27.1 0.049
V -3.79 2.43 -55.1

Cr -1.94 4.88 -20.6
Ma 0.179 55.1 -17.8
Fe -4.03 -11.7 -56.8
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Table 7. Error Analysis for Perturbation Results.I

Fractional Errors, Rert - ransport
B..7ransport

Concrete Type 5.80 cm 20.32 ca 40.64 cm

Ordinary Type 03 -0.0025 0.0081 0.010

Ordinary Type 04 -0.0075 -0.024 -0.060

Magnetite 0.035 0.46 0.39

Megne---te with Otntewt .071 0. 77 -0.54
Steel Punchings

i mnit e with O-mnewt .046 1.13 -.Z. 5
Steal Punchlngs

Serpentine -0.010 -0.0031 -0.069

TSPF
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configurations to be amenable to one-dimensional transport

analyses, the wood studs were approximated by a homogenous

region of 1/8 the densit7 of wood (the ratio 2:16). The re-

sults of the one-dimensional transport calculations for these

configurations are sumarized in Table 8.

6.3 RING SOURCE EFFECTS

The calculations reported in Sections 6.1 and 6.2

for dose transmission through concrete slabs and other build-

ing structural elements have been for a point source above an

infinite slab. Since adjoint calculations were performed for
the concrete slabs it is particularly convenient to fold these
adjoint fluxes with the incident fluxes from other source con-
figurations. The ring source is of particular interest since
it has been the recommended source configuration for civil
defense shielding analysis. The ring source results presented

here are based on a rotation of the point source fluxes incident
on the slab followed by a convolution with the slab response

function.

* 6.3.1 Source Rotation and Lengendre Enpnsion

The problem is to calculate the flux on the axis of

a r.ing sourze in air, given the flux from a point source in air.
This can be determined by a straightforward rotation of coordin-

ates. Let Cl represent a vector whose elements are the flux
moments for the point source,

-
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Table 8. Results of Walls and Roofs Calculation.

tad
Dose, -a

source neutron

Configuration Neutron I Total
-A&y Transmssion

Wall:

Wood Exterior 3.68(-22) 1.46(-22) 5.14(-22) 0.37

Brick Exterior 2.46(-22) 1. 01(-22) 3.48(-22) 0.25

Roof:

Shingle 2.86(-22) 1.48(-22) 4.34(-22) 0.32

Built Up 2.28(-22) 1.50(-22) 3.78(-22) 0.28

74



+1

where E f - (vi)P(j)dui

* -A.

- cosine of the angle meaaured from the
line to the source

pt are the Legendre polynominals.

Also, let [01 represent the corresponding Legendre expansion

of the flux for the ring source, then

[0] - ME03

where A H

and
+1 2r

M, 2 f PX(u)du P (Cos e)do

-1 0

where e and 0 are illustrated below.

~RING SOURCE

7

a
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8 can be determined from 8O, 0, and 6 as follows.

U B cos ecos a + sin b 0 sin e cos

6.3.2 Ring Source Results

The source rotation and folding with the adjoint flux
was performed f:r three thicknesses of TSF concrete and for ring

source delimation angles, 90, from 0 to 900 (0* corresponds to

the point source). The ratio of the transmitted dose from the

ring source to the transmitted dose from the point source are
plotted in Figure 20 as a function of the cosine of the declina-
tiort angle. In general, the transmitted dose decreases with
increasing declination angle due to the effectively increased
average path length through the slab. It is interesting to note,
however, that for the thinner slabs, build up effects cause a
small increase in the transmitted dose over the first few degrees
of declination. These results used the infinite air angular

'Fluxes at 1200 m.
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7. CONCLUSIONS AND RECOMMENDATIONS

The relative importance of delayed radiation for civil

defense applications for high yield weapons has been demonstrated.

These data are presented in Chapter 5. The angular dependence of

the delayed radiation have not been studied in detail, however,

preliminary indications are that the angular distributions tend

to be more forward peaked then the prompt radiation and, there-

fore, could have some impact on the wall and roof barrier factors

for INR. These effects should be evaluated.

The use of newer cross section data to determine the

free field environments from prompt radiation indicates some

differences relative to the ENDF/B-II data. These differences

should be indicated in the final methodology which is to be used

for INR applications.

It appears that the selective use of perturbation tech-

nique-s is more than sufficient to determine that variation (either

an increase or decrease) in the initial protection factor for

changes in material compositions based on elemental differences.

It is recomended that provisions be made in the INR methodology

for inclusion of procedures to estimate the effects of both ele-

mental composition and construction techniques on predicted values

of IPF. These techniques could quite easily be developed by using

the data in Chapter 6, along with some supplementary calculations.
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